## Recitation 2: Probability Space

Lecturer: Chenlin Gu

Exercise 1. Let $\left(\Omega_{i}, \mathcal{F}_{i}, \mathbb{P}_{i}\right)$ be a sequence of probability space. Verify that

$$
\mathcal{G}=\left\{E_{1} \times E_{2} \times E_{3} \cdots E_{n}: E_{1} \in \mathcal{F}_{1}, E_{2} \in \mathcal{F}_{2} \cdots E_{n} \in \mathcal{F}_{n}\right\}
$$

is a $\pi$-system.
Exercise 2. (Monty Hall problem) Suppose you're on a game show, and you're given the choice of three doors: Behind one door is a car; behind the others, goats. You pick a door, say No. 1, and the host, who knows what's behind the doors, opens another door, say No. 3, which has a goat. He then says to you, "Do you want to pick door No. 2?" Is it to your advantage to switch your choice? (Suppose that you prefer a car than a goat.)

Exercise 3. Let $\Omega=\{1,2,3,4\}, \mathcal{F}$ be the power set of $\Omega$ and $\mathbb{P}$ the probability measure such that

$$
\mathbb{P}[\{1\}]=\mathbb{P}[\{2\}]=\mathbb{P}[\{3\}]=\mathbb{P}[\{4\}]
$$

1. Show that the following two classes of events

$$
\mathcal{C}_{1}=\{\{1,2\}\}, \quad \mathcal{C}_{2}=\{\{2,3\},\{2,4\}\},
$$

are independent but $\sigma\left(\mathcal{C}_{1}\right)$ and $\sigma\left(\mathcal{C}_{2}\right)$ are not.
2. We learned a theorem that establishes an extra condition in which we can conclude $\sigma\left(\mathcal{C}_{1}\right)$ and $\sigma\left(\mathcal{C}_{2}\right)$ are independent. Identify the condition that is missing in this example $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$.

Exercise 4. Let $\Omega$ be the set of outcome space and $\left(X_{n}\right)_{n \geqslant 1}$ a sequence of real-valued random variables defined on $\Omega$.

1. Describe the following expressions without using the words "for all/any" nor "there exists"

$$
\begin{aligned}
& A=\bigcup_{a \in \mathbb{N}} \bigcup_{b \in \mathbb{N}} \bigcap_{n \geqslant 1}\left\{\omega \in \Omega, a \leqslant X_{n}(\omega) \leqslant b\right\} ; \\
& B=\bigcup_{N \geqslant 1} \bigcap_{n \geqslant N} \bigcap_{m \geqslant n}\left\{\omega \in \Omega, X_{n}(\omega)-X_{m}(\omega) \geqslant 0\right\} ; \\
& C=\bigcup_{k \in \mathbb{N}} \bigcap_{N \geqslant 1} \bigcup_{n \geqslant N} \bigcup_{m \geqslant N}\left\{\omega \in \Omega,\left|X_{n}(\omega)-X_{m}(\omega)\right|>\frac{1}{k}\right\} .
\end{aligned}
$$

2. Do the reverse operation to translate the following events in $\Omega$

|  | set of $\omega \in \Omega$ such that the sequence $\left(X_{n}(\omega)\right)_{n \geqslant 1} \ldots$ |
| :--- | :--- |
| $D$ | $\ldots$ is not bounded from above, |
| $E$ | $\ldots$ goes to $+\infty$. |

Exercise 5. Prove the strong law of large number under the condition of $L^{4}$ moment.

